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RADAR RESOMANCE REFLECTION FROM SETS OF
PLANE DIELECTRIC LAYERS

P. D. Jackins and G. C. Gaunaurd
Naval Surface Weapons Center
White Oak, Silver Spring, MD 20910

ABRSTRACT

The prediction of the Resonance Scatterina Theory (RST) for the
reflection coefficient from a set of two contiquous plane dielectric
layers separating two semi-infinite dissimilar non~-conducting media,
is constructed and compared to the exact classical model solution.
The comparison serves to: a) show the accuracy and simplicity of the
RST-prediction, and b) to wunderline the usefulness of the RST to
produce simple physical interpretations of generally complex
phenomena. The analysis provides a systematic method for detecting
the presence of a dielectric layer under another one covering it
(possibly the situation caused by an oil spill in ice-covered Arctic
regions), by certain modulation effects present in the ‘“response
surface" of the returned echoes. This method also identifies the
material composition of the lower or hidden layer in the . bilaminar
configuration. The process disentangles which resonance feature
present in the radar reflection coefficient is caused by which of the
two interacting layers, This, therefore, solves the inverse
scattering problem for the composition and thickness not only of the
top visible (ice) layer, but also of the substance (o0il) hidden under
that upper layer. ,

INTRODUCTION

For many years wave reflection and transmission throuah
penetrable layered media has been a well plowed field of research
where solutions usually have heen qiven in terms of reflection and
transmissfon coefficients. These coefficients describe the eneraqy
fraction returned by, or transmitted through, the (possihly layered)
scatterer (1-7). While such solutions are exact, they are so
cumbersome for systems of two or more plane interacting layers that
they hardly ever permit a quick understanding of the physics behind

1
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the results, A novel analytical approach denoted the Resonance
- Scattering Theory (RST) (8) has been recently developed at NSWC,
This method has been applied to many probelms dealina with the
scattering of (acoustic, electromagnetic and elastic) waves by
;4 penetrable objects, mostly of simple shapes (8). While the results
- generated by means of the RST are mostly approximations, their
simplicity and accuracy permits a areater insight and deeper
understandina of the physical mechanisms involved in their generation
than was ever before possible.

————ta b

In general, under the dissecting knife of the RST, each of the )
partial waves (or normal modes) making up the total scattered field
by a tarqet can be subdivided into two contributions., The first one,
denoted the "background," represents the wave-field returned by an
otherwise identical but impenetrable scatterer, The second portion
of the scattered wave-field represents, and is caused by, the
resonances of the internal penetrable material making up the
scatterer (8), The splitting described above also holds for the
reflection coefficient from plane layvers where the "backgrounds” are
usually constants, The RST was recently applied to the problem of
sound transmission/reflection through/by a 1liquid 1layer embedded
within one fluid (9), and later when the liquid layer separates two
dissimilar fluids (10), In electromagnetism the method was first
conceived and developed for the spherical geometry (11), and i
presently for sets of plane, dielectric, interacting layers.

I. THE CLASSICAL MODEL

L We are particularly concerned here with the detection and
/| possible material <characterization of thin petroleum (0il) layers
lying beneath a relatively thick overlayer of ice using radar echoes.
We will model! here, however, a general situation consisting of two
interacting layers (ice and oil) separatina an upper (air) from a
lower (water) medjum while (radar) electromaanetic waves are incident
on the bilaminar system from the upper (air) side. (See Figure 1l.) We
exploit here the fact that both substances have different dielectric
constants and different thicknesses, which will excite certain
characteristic “"resonance features" in the returned radar echoes.
These features can be made manifest and much more understandable
under the light of the RST.

He assume that the bilaminar system is composed of two ideally
bonded 1layers with the upper one (ice) thicker than the lower one
(0i1). Following the approach of Brekhovskikh (6) the oil-water
interface 1is chosen as the origin of the coordinate system, as shown
in Figure 1, while the water (medium 1) and the air (medium 4) are
considered to be semi-infinite in thetz directions. Media 2 and 23,
of thicknesses d, and d,, are the oil and the ice, respectively, and
we further assume that d,<d,. The incident electromaqnetic wave is
‘ assumed to emanate from a distant source in medium 4 and it s
‘ polarized with the electric vector E parallel to the media
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interfaces. Maxwell's equations in Gaussian units are

KY .x- 4mo > € oF EGERN |
VxH <, E + c, 3t , V-E =90 (1
Fad oo Fod

X Cy ot ’ VeH =0

where ¢ is the dielectric constant, ¢, is the speed of 1light in
vaccuum, and u, ¢ are the permeability, conductivity of the medium
supporting the wave, respectively. For plane monochromatic waves
with time-dependence e~ 1wt Maxwell's equations reduce to:

o S - B
qu=-.i£_ E , $XE = &ﬁ (2)
Co Co
where
v _ 4no ‘
g'=¢ + 1 e . (3)

In aqeneral, air, fresh water, o0il, and fresh water ice are
sufficiently poor conductors so that o~0, Ve note that salt water
and salt water ice are relatively better conductors, and thus,
corrections are needed 1in such instances. The (vector) Helmholtz
equation for F is found by taking the curl of the second of Eas.
(2), and wusing the first of Eqs. (2) to eliminate the curl of H.
The result is

(V2 +K2) E =0 (4)
where
k= L Jeu = w '/e- (5)
Co Co .

Here, w=2nf is the anqgular frequency of the incident wave, and c, the
speed of light in vacuum (i.e., ¢, =3x10"cm/sec).

Since there is a physical discontinuity at each media interface,
several boundary conditions must be satisfied. It is thus required
that between the jth and the j+1 nmedia,
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(Ej)tan (Ej+1)tan

(6)

(Hj)tan (Hj+1)tan

This is a statement of continuity of the tangential components for the
electric and magnetic fields across the various interfaces.

The electric field in medium (4) is qiven by

= {A, exp [-—1 ky(z - z3)cos 9..] +
Ey { (7)

~

+ B [exp ik, (z - 2z3)cos 9..]}exp [:lk..z sin 6;.] 3

where A, and B, are the amplitude coefficients of the incidence and
reflected waves, respectively, z,=d, +d, 1is the Tlocation of the
interface separating media (3) and ?4), while 6.4 1is the incidence
anqle. The tangential component of the magnetic field in medium (4)
is given, using Eq. (2), by

an = ;l;{ Ay exp [-ik..(z—z;)cos 8y |- B, exp [ik-. (z-23) cos 9..] } .

. exp[ik..z sin 6..] ®

where

2y = THVES -~ N — 3
cosbBy /T cosB,

is the field i{impedance defined as the ratio of the tangential
component of the electric field to the tanaential component of the
magnetic fteld. Similar expressions are ohtained for the electric
and magnetic fields in the other three media. In medium (1) one has
R, =0 because there is no reflected wave. The connecting bond between
phase-relationships on either side of a boundary is provided by
Snell's law, which is,
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Ky5in8, = k:lbsinezl for 1 =1, 2, 3 (10)

-

where

! Three sets of equations involving the coefficients Aj and Bj can
be obtained wusing the boundary conditions, Egs. (6), at the
interfaces, [i. e., 2z=0, z=d,, and z=d, + d,] In particular, on the
boundary separating the 2nd and 3rd medium, the boundary conditions
to be satisfied (Eqs. (6)) are,

Azexp (-ikadacos@; ) + Bzexp (ikadzeos62 ) = Ay + By (12)
Azexp (-1kzdzcos @2 ) - Byexp (ik,djcosf, ) = ':'3L fAs - 33)

Inspection of Fiqure 1 shows that the reflection coefficient R
is given by the ratio

B
R B a»

Similar expressions can be obtained for the continuity conditions at
the two other interfaces which then can be used to determine A, and
Ry in terms of A;. After all the reductions, the reflection
coefficient of the bilaminar system under study is

R = A~ c0852c0883-B" sind;sindy - 1 [C-sind,cos 8y + D cosd 25ind
A% co802c0803-B" sindsindy ~ 4 8indco86; + D¥ co 28in 6, (14)

where
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puappe z223(2y * zy)

Dt = zlzgi 2%:1.

= 2y (2 + z124) (15)

+

D~ = 2z, (2} + z,zy)

and
82 = 2% (£dy) L Ve, V1 - £ sin%e,

Co a €2 (16)

n —_f
§a = :2:—;— (£ds) Vg3 Vl— 2: Sinzeu

and o is the thickness ratio a=d3/d2>1, In the case where
parallel to the air-ice interface, the impedances are

2y - 1/EfE; cosga (3 =1, 2,3, &
and also a7
zj = Cosej/VEj (J = l’ 2’ 3’ l‘)

-
for the case where £ s parallel to the plane of incidance.

The numerical values used in this analysis
constants are as follows:

= Iy
E is

for the dielectric




Air: €y = 1 3 Ice: gy = 3.2

(18)
oil: €2 = 2 H Water: €3 = 81

In the limiting case where d,»0 (and 62 »0), the reflection
coefficient reduces to that of a sinale layer of thickness d
separating two different media, viz,

R'LL(zl-z'..) cos8y - 1 [z§ - z;z.]sin 19
2z3(z) + z,) cos®y - 1 [z§ + z,2,]|sinés (19)

This same result is also obtained from Eq. (14) when media (2) and
(3) are the same [i. e., 2,=23,€2 =€3]. For completeness, we also
give the transmission coefficient T for the double layer systen

T - 2z12223/cosb2cos8 3 oA
AT - BT tanj;tané;- i [Ca:tan62+ D' tan tS-El_ Ay (20)

which for one layer (i. e., d,»0 62»0) reduces to

22123
z3(z1 + 24) cos ;- i[ 2?'0’ Z)Zh]SiﬂG; * (21)

T=

Equations (14) [or (20)] and (19) [or (21)] are exact solutions for
the reflection coefficient [or the transmission coefficient] for a
two-layer and one-layer dielectric slab, respectively, separating two
semi-infinite non-conductive media.

The square of the magnitude of R can bhe expressed as

IRI; - 23(z) - z4)%cos?8; + (23 - z124)? sin® 6y (22)
z3(z1 + 2Zu)2cos’6y + (2§ + 2124)° sin® &

for a sinqgle layer, and
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for the bilaminar configuration.

Plots of taraet cross-sections or of reflection coefficients
IR]2  as functions of frequency (or frequency-thickness products) and
of another variable such as anqgiv of incidence 8, have been referred
to as "response surfaces" in the past (12), The response surface for
a sinale (d,+»0) layer (parallel polarization) is shown in Fiqure 2
: for frequency-thickness products ranging from 0 to 900 MHz-meters,
\ and incidence angles 6, from 0° (normal) to 90° (qrazina), This .
response surface exhibits a series of peaks and valleys which are :
seen to be evenly spaced in planes of constant incidence angles, but
unevenly spaced in planes of constant fd, products. The minimum
values of |R|? correspond to values for which the real part of the
denomninator of R vanishes. They approximate the resonance
frequencies of the layer of thickness d;. For the case of a sinqle
laver system, these resonances occur for phase delays &S which are
odd multiples of w/2. For normal incidence cases, this corresponds
to plate thickness which are proportional to an odd number of
quarter-wavelengths, These eigenfrequencies are the natural
resonances for the unloaded plate.

SRR e b, o

For the bilaminar system, the resonances occur at values of the
i frequency thickness products fd; and of the incidence anqgle 8, for
| which

Atcos8,cos8; = Btsinbzsindy . (24)

For fixed 1incidence angles, this characteristic equation
determines the frequency-thickness resonances (fda)i of the bilaminar
system (i=1, 2,e..n). Note that Ea. (24) represents the vanishing
of the real part of the denominator of Eq. (14).

S LN PR S

Figs. 3 and 4 exhibit the response surface for the bilaminar
system, for various polarizations, ice-to-0il thickness ratios, and
in various frequency regimes. The six parts of Fig. 3 are all
produced for incidence angles 6, in the range 0<5,£90° and for the
frequency-thickness products in the range 0<fd;<900MHz-meter. The
upper-most plot in Figq. 3 is for perpendicular polarization, (see
Fia. 1) a case of little interest in this analysis, while the other ﬁ
five plots are all for the case of parallel (i. e., ﬁ| )
polarization. The second plot of Fiq. 3 corresponds to the case ''of
a single layer with parallel polarization. The following plots
(third to sixth from the top) are for decreasing values of the
parameter o as follows: third, for o=500; fourth, a=100; fifth,
a=10; and sixth, a=5. These correspond to increasinqly thicker
layers of oil (d,) relative to a fixed layer of ice (ds). The last
one, for example, corresponds to an ice layer five times thicker than
the oil layer. Fiaure 4 presents aqain the response surface, all for
parallel polarization, but in the much larger range of
frequency-thickness products gqoing from 0 to 3 GigaHertz-meter.
Highly inclined ridaes appear in the response surface in the higher

8
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frequency parts of the ranqes., The top plot is for a single layer,
or a doubhle layer witha==, The second to fourth plots correspond
to o values of a=50,000, 500 and 5, respectively. These plots are
all exact, no approximation having been introduced yet. Practical
radars operate in the upper portions of these plots.

'
s ai -
B il T v

From Eq. (24) [or Eq. (19)], it follows that for a single
: , layer (i. e., 62+0) the characteristic eaquation aiving the resonances
' reduces to cos63;=0. Table 1 presents a listing of the first twenty
roots of the bilaminar situation aoverned by Eq. (24). This table
is constructed for the same thickness ratios considered in Fiaq. 4
which are o =d3/d2 = 60,000, 500, and 5 MHz-meter. Table 1 is
constructed for the case of normal incidence 6,=0°, Table 7 contains
exactly the same information as in Tahle 1 but for an incidence angle
of 0,=30°, These entries correspond to the location of the minima in
Fig. 4, but in the planes 8, =0° and 30°, respectively.




1. MODEL FORMULATION IN TERMS OF THE RESOMANMCE SCATTERING THEORY

The RST formulation (8) first linearizes the terms appearing in
the riqht hand side of Fq. (14) by means of a Taylor series
truncated after its second term. We denote

F (fdy) = A cos &cos 8y~ B! sin&sinds (25)

then, the two-term Taylor series expansion about f . is (for each n):

F (fdy) = F (fonds) + (£- fon) d,a(fd ) ..... (26)

Here, fon are the resonance frequencies, roots of Eq. (24) for
constant incidence anqle 9, , or which are the same, they are the
roots of

Ft(fdy) = 0, (for £ = fop) 27)

It is now clear that

F-(fonds) = A”cos (n )cosé(n) B"sind (n)sinS(n) (28)

and

+
._al"—(fond 3) s 35 . o . o
Xfonds) - [(A fay B 3(fd3)) t_’:‘i):Gzo cos 83y’ +

(29)
+ 36 + 3, )l @) m)]
+B sindlg’ coslse
( a(fds) Xfds) b=t o
and the derivatives are found from Egqs. (16) to bhe:
26, - 2 ) _ Es 2 Y
and
by I - 29 )8
Keh)” e 1 - 2 siney) - (31)

10




It is not hard to show that Eq. (14) can now be re-written as

had a+ b(x - x5,) + 1 g(I',/2)

Rm (P
here z : X - Ko + 1 (T7D) : (32)
n=]
Ta 1 (n) _ (n) (
2" T3 [Cf"s:lném cosly ’ + D"'cosSmn)sinng)] (33)
[ 3x J »op
) / ay*]
L 8x 2x Xon (34)
g = c~ sin{-gg)COSGg) + D”cos Gg% sirﬁgg) (35)
ct sinég)cos6$)+ D*cos dg%)sinﬁg?)
- (A"t - A+B‘)s1xﬁ§{,‘)sin6§%) (36)

A o
and x=fd;. *on

The form of the reflection coefficient in Eq. (32) exhibhits the
resonance character of the phenomenon. It was borrowed from nuclear
scatterina theory, where similar expressions a e assocfated with the
names of Breit and Wigner (13),and it is now the central-type of
expression for the RST-analysis of macroscopic scattering probhlems in
electromaanetics, acoustics, and elastodynamics (8). The summation
in Eq. (32) 4s merely symbolic, since the formula and the
RST-approximation are only valid in the vicinity of the resonances,
and the sum merely means that the neighborhoods of all the resonances
must be accounted for. Each resonance xgp has a width I, associated
with the imaqinary part of the simple denominator of Ea. (32).

In terms of the RST formalism, it follows from the above

analysis, that the square of the modulus of R which is the quantity
plotted in all the araphs, is aiven hy

11




2 . & [a+b0 - x )12 + gr2/4
IR | nz.l (x - %p)* + Tp®/4 37)

for the bhilaminar system. For the single layer, this expression
reduces to

R)? = Y _eix - xoxzm)2 + £2 yp?/4
n (x - xpn)° + Yn'/b (38)

where the x,, are now the roots of cosd3=0, rather than the roots of
the characteristic equation (24), and where a-0 and

e = (z) - 2,)/(zy + z,) = A~/at

(39)
f = (2} - z:2,)/(2} + 2z,24) = D7 /D
-3
- - _P:___ - Co (2% + z32z) €y 2
o opt 283 ZECMNEACIEES N A T e..]
Ix

and the layer of thickness d, (i. e., 0il) has been removed since in
this case d,+0. We have already shown in the acoustic case (14) how
the casting of the expressions into the RST-forms can be made exact
by means of Mittag-Leffler rather than Taylor series expansions, a
point that will not be considered further here, since the approximate
RST expressions developed here are adequately aood and useful for our
purposes. We note that the one-layer resonance relation in ¢Etq.
(38), obtained as a particular case of our more general Eq. (32), is
the electromagnetic counterpart of an available acoustic
relation (10) useful to study ocean bottom properties.

IT1., NUMERICAL CALCULATIOMS AND DISCUSSION

The quantity |R|2 1is a scalar function of incidence angle 8, and
frequency-thickness products fd;. This quantity can be plotted
three-dimensionally as we have shown before in Figs. 2, 3, and 4.
It can also be plotted two-dimensionally versus one of the variables,
keeping the other one fixed. For normal incidence (i. e., 64 =0),
Fig. 5 shows the two-dimensional response curve (i. e., [R[? vs.

12




layer of ice separating air from water (and for F“ polarization),

and later for a double layer of ice and o1l with 'four Jlevels of

oil-thicknesses relative to the ice's. The relevant values of « in

the bottom four graphs of Figqg, 5 are a =d;/d, =500, 100, 25, 5,

respectively. Two sets of curves are shown in these graphs, one in
; solid and the other in dashed lines. The solid lines represent the
‘ results of exact calculations using the (complicated) classical
formulism that led to Egs. (23), (15), and (16). It is aquite
difficult to interpret the physical phenomenon from these cumbersome
expressions. The dashed lines represent the results of approximate
calculations wusing the RST-formulism that led to Eqs. (33) - (37).
It is quite evident from these plots that the RST-formulism generates
each resonance "dip", one at a time, and that the aaqreement between
dashed and solid curves near the tip of each minima (or dip) is
nearly perfect, and only away from each resonance minima do
differences become apparent between the two. In fact, the aqreement
betwen solid and dashed curves is near perfect down to the half-width
?f iach resonance-dip, measured at half-minimum, and qiven by Eaq.
33 L]

'12 fd,) in the range 0<fd< 1,000 megahertz-meters, first for a single
i
L]
1
i

The RST-form in Eq. (37) or better in (32), is much clearer to !
f understand and it represents the addition of contributions each
' emerqging from a pole located at

X = Xpopn — i rnlz (40)

in the complex x-plane. We have expanded on this type of
interpretation before (15) 1in similar instances. The real part of
the pole-position aqives the location of the resonance minimum in the
x=fdi; axis, and its imaginary part is its half-width. As shown in
Fia. 5 as well as in Table 1, for a single layer the spacing between
resonances, the maanitudes of |R|2 at resonance, and the resonance
half-widths are all constants. Further observation of Fig. 5 shows
that when the ice 1layer 1is very thick compared to the oil layer
(i. e.,a =500), there is hardly any visible difference between the
response curve for the bilaminar confiquration and that of the single
ice layer shown at the top of Fig. 5. The resonance locations,
roots of Ea. (24), approach those of the single dielectric slab as
d2> 0, For ice-to-oil thickness ratios of 100 or less, the response
curve of the bilaminar Tayer confiquration starts to differ visibly
from that of the single layer. The difference manifests itself in an
upward slope of the response curve that culminates in the wavy
undulations shown at the bottom of Fig. 5, where a=5, The pattern
exhibited 1{is similar to the modulation produced by the beating
together of two sinusoidal waves of different frequencies. We repeat
that all results displayed 1in Fig. 5 exhibit excellent aareement
1 between the exact solution (solid 1lines) and the approximations
| inherent to the Resonance Scattering Theory (dashed lines). We
remark that there 1is a minute difference between the exact
resonances, at the minima points of the solid line graphs, and the
RST (dashed) approximations, which is due to the presence of the

13
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j quantity "a" appearing in the numerator of Eq. (32), which is small
| for the case at hand. We also note that while the spacing between
{ resonances and their widths were constants for the single-layer case,

this no longer holds for the bilaminar confiquration where a "cyclic"

l variation is now present.

i

4

IV, THE INVERSE SCATTERING PROBLEM

It is assumed that the electromagnetic properties of air and
water, in this case ey, €1, are known. The solution of the inverse
scattering problem then reduces to a determination of the paramters
d2, €2 , di, €3 for the thicknesses and dielectric constants of the
oil and ice layers. We will show that sufficient information can be
extracted from a careful analysis of the response surfaces and curves
presented in Figs. 2 through 6 to completely 1identify these
parameters. The key to the solutionlies in an understanding of the
characteristic Eq. (24) which determines the locations where
resonances occur, The quantities At and B* present in this equation
depend on the dielectric constants of the four media involved in the
reflection process, as weil as on the initial incidence angle 6,.
For simplicity in the anlaysis we shall assume normal incidence
although any obligue 1incidence could have been used just as well.
The phase delays introduced by the two finite layers, 6, and &5, (c/o
Egs. 16) depend on the dielectric constant and thickness of the
respective layer as well as on the frequency of the incident
radiation,. We note that if the thickness of the o0il layer is small
and the frequency is low, then 8, will have a small value. If it s
further required that 63 not be small, then the characteristic Egq.
(24) is approximated by

SO

cosb; = 0 (41)

which we saw was the resonance condition or characteristic equation
for a sinale (upper) layer (of ice). Thus, at low frequencies, the
bitaminar layer problem with a large ratio «a of ice-to-0i
thicknesses, behaves to first order 1like a single ice layer.
However, as the frequency increases or as the oil Tlayer thickness
increases, the effects of the oil layer on the resulting response
curves hecome more pronounced. There is a modulation effect visible
in the response curves (c/o Fig. 5) and caused by the presence of ‘
the oil layer which was discussed in §l1I. We further note that in 1
the bottom graph of Fig. 5, the first displayed resonance is very
near in amplitude to that of the single ice layer aiven in the top
graph of Fig. 5. As the frequency increases, the amplitude of the
following resonances start to increase approachina a minimum which
coincides with the value seen for a single oil layer in Fig. 6. How
1 closely the resonances will approach those of the single oifl layer is
ultimately governed by Eq.,. (24). 1I1t, therefore, followsthat the
amplitude oscillations introduced by the modulation effect here
described (c/o Figq. 5, bottom araph) are bounded by the extreme

14
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values of the resonance amplitudes of the o0il or the ice layers
individually and the modulation is confined to occur in between them.

It can be seen from Eq. (32) that at any resonance
- SR = |t + 22| ® (42)
R T/ D7

where I'n/2, q, and a were given be Egs. (33), (35) and (36),
respectively, It 1is easily shown for resonances where either cos §;
or cos 83 is close to zero, that a/(I'n/2) 1is negliaibly small, By
means of Eqs. (29) - (36) this ratio is

_ (A"B* - ate-) cossg)cos (n)
Bt (C"’siné;‘)sinag‘)-k D"’cosé(z%) siné‘;%))

a
Ta/2) © (43)

AtB- - ATBY | 1
BF [ctean 62(5'%- n+:ans§%‘)]

Thus, for larqge values of either tané%) or tané‘ﬂ, it follows that

)
ja/(ra/2)| € [tan sg' J ! or [tan 5&‘,"]-1 (44)

Hence, in the neighborhood of these resonances, the ratio IZa/I‘n | s
neqliqihle and any resonance amplitude is essentially given by

» R=g
which reduces to

c” (45)
fo = F

for an oil-type resonance provided that tand, >>1, and to

D~ (46)

for an ice-type resonance provided that tané;>>1,




]
p

«‘m —._-L:n... — s o B ahd B i . '

For the specific prohlem considered here (i. e., ice and o0il)
the resonances with the smallest amplitudes (i. e., |[R[%2=0,226) are
caused by the ice layer (see Fig. 5 top) while. the resonances with
the laraest amplitudes (i. e., |{R|?~ 0.405) are due to the o0il laver
(See Fig. 6). If the amplitudes of the 4ice and oil resonances,
distinquished in this fashion, are represented by Po and Ry,
respecitively, then it follows from Eqsi. :(45) and the expressions
for C+or D+t in Fgs. (15) that : '

—— e

1+R
za = (z12u)% (“-1-:_—};:':‘)!i .. (47)
The impedances 2z, and z, are known quanfities, Eq. (9), while
Py 1is determined from the <calculated response surfaces of from
ratterns simitar to those in Fias. 5 and 6 ohtained fron

measurements, For normal incidence, Ea. (47) directly yields the
dielectric constant of the hidden (0il) layer in the forn

_ 1
€2 = (zlz“)'li (..::_T’:—%-%)'i » (48)

In a sinilar fashion, the dielectric constant for .the. upper
(ice) layer is

2 - 1 - Ry |1 .
€31 = (:nz:.);5 (T;-i-i—-) (49)

In what follows we will assume these dielectric constants known
and aiven by Eaqs. (48), (49), Thus, all the constants A, R, (%,
h+ appearing in Eq. (15) can be determined from selected resonance
amplitudes 1in the reflection coefficient plots. The remainina still
undetermined quantities are the thicknesses of the oil and the ice
lavers., This informnation can be extracted from the (half) widths of
the resonances.

For the purposes of solving the inverse scattering problem, we
note that the response surfaces and curves in Figs. 2-6 are all
really found in practice as functions of frequency f, rather than
: frequency-thickness products fd,. Figs. 2-6 have all been displayed

versus x (=fd;) for convenience in the formulation and ease in the
display, but with the understanding that f was the physical quantity
1 varyina alona those axes since d, is not really known apriori. The
: difference between x and f is the constant scale factor d;. If those
response curves were displayed versus f, the amplitudes of the
resonances vwould remain the same as in Figs. 2-6 but their width

16




would be changed by a factor of dy. The widths 'y given in Eq. (33)
in plots displayed versus x will now become widths Iy in plots
displayed versus f and they are given by '

h __ C‘"sinds%) cos (n), + D*‘costsgl) sinégng) (50)
2 4 2E B
I Mox
Xon

a value which differs from that in Eq. (33) by a scale factor d: now
present in the denomirator. It is clear that

d‘: aF+ = aF+
* Tox af
and that w
F+ 2
(%= - ’[ﬁ Ve o4 B/ | sinel) cot D+
*on | S (51)

[A+ YeEy + Bt €2 a“l}:os 20 sin&wi

L4

For an oil-type resonance, for which tandp>1, Eq. (50) aqives the
approximate result

' +
Tno . , c ; '
2 Bae rmeter /5 . 2

and for an ice-type resonance, for which tané»>1,

rni - D+ .
2
:: d; [A"’/s; + Bt Ve, a"l]

17
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Dividing these two equations one by the other and solvinag the result
for a-! {(zd2/ds) yields,

- es \4 _a's - »*
ot ea-;) o (36
where
¢y, G
S oF —ﬁ'- (55)

Once o' is known, either Eq. (52) or (54) can be used to deternine
d, and d;. These thicknesses come out to bhe

i .
c 1 f_atct  _Bipt
4= T ATS-BT? | Tno Thi ) (56a)
- S0 1 ptct A+t |
d= T8 TFE-AT rrr Tog (56b)

which are expressed here in terns of measured widths Tn, , Tnj and of
quanitites such as A%, B+, C*, 0¥, e2, €3, 811 determined earlier.
A1]1 the material and qeometrical parameters required to completely
solve the inverse scattering problem have been determined from the
radar reflectians.




would be changed by a factor of d;. The widths . T, qiven .in Eq. (33)

in plots displayed versus x will now become widths Ty in plots
displayed versus f and they are qiven by

_12]';_ - - C"'sin&g) cos (n? + D"'cong’)sigGg') (50)
aFt ' L
ds [*—-—ax . {
Xon

a value which differs from that in Eq. (33) by a scale factor ds; now
present in the denominator. It is clear that

Ft  oF

d: 3% = T3F

and that

()2 e m et ]t e
XOn i B

[A+ veEy + st €2 a‘l}:os G20 Sinﬁgoi

(51)

For an oil-type resonance, for which tanSp>1, Eq. (50) qives the
approximate result

pt : + .
Tao __C , C
2 ‘2:: da[A"’ vez a1+t /ET] . (52)

and for an ice-type resonance, for which tané>>1,

Tng p+
[A+./e, + Bt Ve, a"l]

2
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Dividing these two equations one by the other and solvina the result

for a-! (=d2/d;) ytelds,
:
1. (e, ¥ _ats - B*
@ Ez) AT - SBY (54)
where
ct T T
S = F —r:t' [ (SS)

Once o' is known, either Eq. (52) or (54) can be used to deternmine
d, and d;. These thicknesses come out to be

f . ) atct Bt |
. d= 7T TATB | Tho Tht | (56a) |
‘ dam S0 1 [ Brct A"'b‘*’c
3 m ﬂt_A?z r;\'o - t'\i (56b)
3 -

which are expressed here in terns of measured widthslﬂo .Iﬁi and of
quanitites such as A%, B*+,.C*, D% e, €3, 231l determined earlier.
A1l the material and qeometrical parameters required to completely
solve the inverse scatterinqg problem have been determined from the

radar reflections,
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V. CONCLUSIONS

We have constructed the RST predictions for the reflection coefficfent
of a bilaminar plane configuration of dielectric layers separating two
dissimilar, non-conducting media. This predicition is compared to the
classical model prediction. The comparision serves to emphasize the accu-
racy and simplicity of the Resonance Scattering Theory (8), as well as its
ability to yeild a clear physical interpretation of a complex phenomenmom {in
terms of scattering poles. Furthermore, the RST shows its capability as a
material probe to extract geometrical and material composition information
from the set of scattering layers returning the reflected radar echoes.
This capability is used to completely solve the inverse scattering problem
for the bilaminar configuration under analysis. The locations and widths of
the resonances as well as their amplitudes determine the thickness and
dielectric compositions of both interacting layers. The process disen-
tangles which set of resonance features in the reflected echo is caused by
which of the layers. The calculations that we display in many graphs
illustrate the case of an oil layer hidden under a covering of ice, both
media sandwiched between air on top and water at the bottom. This work
could be useful in the further development of techniques for detecting and
mapping the extent of an oil spill under solid ice.
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TABLE 1

CASE:

SINGLE LAYER

W NV e WN = g

N vt s pt pt e P b et e e
O W 0O ~N O W W N ~0O

(MHz-meters)

41.9
125.8
209.6
293.5
377.3
461.2
545.0
628.9
712.8
796.6
860.5
964.3

1048.2
1132.0
1215.9
1299.7
1383.6
1467.4
1551.3
1635.1

Normal Incidence (i.e., 6, = 0%)

a = 50,000

41.9
125.8
209.6
293.5
377.3
461.2
545.0
628.9
712.7
796.6

' 880.4

964.3
1048.1
1132.0
1215.8
1299.7
1383.5
16467.4
1551.2
1635.1

LOCATION OF THE RESONANCE FREQUENCIES

DOUBLE LAYER

a = 500

41.9
125.6
209.3
292.9
376.6
460.3
544.0
627.9
711.4
795.1
878.8
962.5

1046.1
1129.8
1213.5
1297.2
1380.9
1464.6
1548.3
1631.9

o=35

35.2
106.4
179.2
253.1
372.2
400.5
472.2
542.7
613.5
685.7
7159.4
833.6
907.2
979.4

1050.2
1120.7
1192.4
1265.7
1339.8
1413.7




TABLE 2

CASE: Oblique Incidence at 64 = 30°

LOCATION OF THE RESONANCE FREQUENCIES

SINGLE LAYER DOUBLE LAYEP
L (MHz-meters) a = 50,000 a = 500 a =35
1 43.7 43.7 43.6 36.7
2 131.0 131.0 130.7 110.9
3 218.3 218.3 217.9 187.0
4 305.7 305.7 305.1 264 .4
5 393.0 393.0 392.2 342.0
6 480.3 480.3 479.4 418.9

) 7 567.7 567.7 566.6 494.0

8 655.0 655.0 653.7 567.5
9 742.3 742.3 740.9 661.1
10 829.7 829.7 828.1 716.3
11 917.0 917.0 915.2 793.1
12 1004.3 1004.3 1002.4 870.8

" 13 1091.7 1091.6 1089.6 948.2
14 1179.0 1179.0 1176.7 1024.2
15 1266.3 1266.3 1263.9 1098.5
16 1353.7 1353.6 1351.1 1171.8
17 1441.0 1441.0 1438.2 1124670
18 1528.3 1528.3 1525.4 1322.1
19 1615.7 1615.6 1612.6 1399.5
20 1703.0 1703.0 1699.8 1477.2
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